
MATH 280B Multivariate Calculus Spring 2011

Integrating a vector field over a surface

Definition

We are given a vector field ~F in space and an oriented surface S in the domain of
~F as shown in the figure below on the left. The figure on the right shows the vector
field plotted only at points on the surface. The general idea of integrating the vector
field ~F over the surface S is

add up over the surface infinitesimal contributions each having the form
(component of ~F normal to S) times (area of piece of S).

For each infinitesimal piece of the surface, we have an infinitesimal area vector d ~A
as shown in the figure below on the left. For each infinitesimal piece of the surface,
the corresponding infinitesimal area vector points perpendicular to the surface (at
that piece) and its magnitude gives the area of that piece. A sampling of these along
the surface is shown in the figure on the lower right along with the vector field along
the surface.

From our knowledge of dot product, we know that ~F · d ~A gives us (component of
~F normal to S) times (area of piece of S). so integrating the vector field ~F over the
surface S is

add up over the surface infinitesimal contributions each having the form ~F · d ~A



We will denote this type of integral as∫∫
S

~F · d ~A

and refer to this as a surface integral or a flux integral for the vector field ~F over the
surface S. Another common notation is to express d ~A as d ~A = n̂ dA where n̂ is a
unit vector perpendicular to the surface at each point. With this, a surface integral
is denoted ∫∫

S

~F · n̂ dA.

Interpretation

One way to interpret a surface or flux integral is to think of the vector field as
representing velocity vectors for a flowing fluid. To emphasize this, let’s denote the
vector field ~V so that we are considering the integral∫∫

S

~V · d ~A

Think of the surface S as a rigid mesh held in place with fluid flowing through it.
We then have the following interpretation: The surface integral gives the time rate
at which fluid volume flows across this net in the direction of the d ~A vectors. One
way to make this interpretation plausible is to look at units. Since ~V is a velocity,
it has units of meters per second (m/s). The infinitesimal area vector d ~A has units

of square meters (m2). So, the product ~V · d ~A has units of cubic meters per second

(m3/s). This is consistent with the claim that each ~V · d ~A represents a contribution
to the rate (in time) at which fluid flows across the surface. The integral is a sum of
these contributions.

Looking at units makes this interpretation plausible. Using some geomtry, we can
make a more complete argument. [Note: This more complete argument is to be added
here in the future. This will probably not happen this semester.]

Computing surface integrals

In computing line integrals, the general plan is to express everything in terms of
two variables. This is a reasonable thing to do because a surface is a two-dimensional
object. The essential things are to determine the form of d ~A for the surface S and the
vectors ~F along the surface S, all in terms of two variables. How to proceed depends
on how we describe the surface. The solution to the following example illustrates one
approach

Example: Compute the line integral of ~F (x, y, z) = x ı̂ + y ̂ + z k̂ for the surface S
that is the piece of the plane 12x − 6y + 3z = 24 with x ≥ 0, y ≤ 0, and z ≥ 0
oriented so that area vectors have a positive k̂ component .

Note: To get started, you should draw a picture showing the surface and a few of the
vector field outputs along the surface.
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Solution : From the equation of the plane, we compute

12 dx− 6 dy + 3 dz = 0.

This relates small displacements dx, dy, and dz along the plane.
To generate one family of curves on the surface, we can use y = constant. This

gives us dy = 0. Using this in the above relation and solving for dz gives dz = −4dx.
We can now use these to get

d~r1 = dx ı̂+ dy ̂+ dz k̂ = dx ı̂+ 0 ̂− 4dx k̂ =
(
ı̂− 4 k̂

)
dx.

To generate the other family of curves on the surface, we can use x = constant.
This gives us dx = 0. Using this in the previous relation and solving for dz gives
dz = 2dy. We can now use these to get

d~r2 = dx ı̂+ dy ̂+ dz k̂ = 0 ı̂+ dy ̂+ 2dy k̂ =
(
̂+ 2 k̂

)
dy.

With d~r1 and d~r2 in hand, we can compute d ~A as

d ~A = d~r1 × d~r2 =
(
ı̂− 4 k̂

)
×
(
̂+ 2 k̂

)
dxdy =

(
4 ı̂− 2 ̂+ k̂

)
dxdy.

Note that d ~A has a positive k̂ component as desired.
We now want to express the vector field outputs along the surface S in terms of

the same two variables (x and y in this case) that we have used for d ~A. We will use
the equation of the plane to solve for z giving

z = 8 − 4x+ 2y.

Thus, on the surface, the vector field has outputs

~F = x ı̂+ y ̂+ (8 − 4x+ 2y) k̂.

We now compute

~F · d ~A =
(
x ı̂+ y ̂+ (8 − 4x+ 2y) k̂

)
·
(
4 ı̂− 2 ̂+ k̂

)
dxdy

=
(
4x− 2y + (8 − 4x+ 2y)

)
dxdy

= 8 dxdy

The last things we need in order to carry out the integration are the relevant
bounds on the variables x and y. The projection of the surface into the xy-plane is a
triangular region in the second quadrant of the xy-plane. We can use

0 ≤ x ≤ 2 and 2x− 4 ≤ y ≤ 0

to describe this region.
Putting all of this together, we have∫∫

S

~F · d ~A =

∫ 2

0

∫ 0

4−2x

8 dxdy = 8(area of triangle in xy-plane) = 8(4) = 32.

We can (crudely) interpret this as telling us that fluid flow with velocity given by
x ı̂ + y ̂ + z k̂ carries fluid through the given surface at the rate of 32 m3/s. [Note:
This is not quite right in terms of units because the vector field x ı̂ + y ̂ + z k̂ does
not have the correct units for a velocity vector field.]
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Problems: Integrating a vector field over a surface

1. Compute

∫∫
S

~F · d ~A where ~F = ı̂ + 2 ̂ + 3 k̂ and S is the piece of the plane

x + z = 1 with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2 oriented so that area vectors have a
positive k̂ component.

Answer: 8

2. Compute

∫∫
S

~F · d ~A where ~F = x ı̂ + y ̂ + z k̂ and S is the piece of the plane

x + z = 1 with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2 oriented so that area vectors have a
positive k̂ component.

Answer: 2

3. Compute

∫∫
S

~F · d ~A where ~F = y ı̂ − x ̂ + 0 k̂ and S is the piece of the plane

x + z = 1 with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2 oriented so that area vectors have a
positive k̂ component.

Answer: 2

4. Compute

∫∫
S

~F · d ~A where ~F = x ı̂+ y ̂+ z k̂ and S is the open right circular

cylinder of radius 2 and height 6 centered at the origin with axis along the z-axis
oriented so that area vectors point outward (i.e., away from the z-axis).

Answer: 48π

5. Compute

∫∫
S

~F ·d ~A where ~F = x ı̂+y ̂+z k̂ and S is the paraboloid z = x2+y2

for 0 ≤ z ≤ 1 oriented so that area vectors point outward (i.e., away from the
z-axis).

4


